Einstein tori and crooked surfaces

نویسندگان

چکیده

Abstract In hyperbolic space, the angle of intersection and distance classify pairs totally geodesic hyperplanes. A similar algebraic invariant classifies hyperplanes in Einstein universe. dimension 3, symplectic splittings a 4-dimensional real vector space model is determinant. The classification contributes to complete disjointness criterion for crooked surfaces 3-dimensional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Lagrangian tori in Kahler-Einstein manifolds

In this paper we use structure preserving torus actions on KahlerEinstein manifolds to construct minimal Lagrangian submanifolds. Our main result is: Let N be a Kahler-Einstein manifold with positive scalar curvature with an effective T -action. Then precisely one regular orbit L of the T -action is a minimal Lagrangian submanifold of N . Moreover there is an (n− 1)-torus T n−1 ⊂ T n and a sequ...

متن کامل

Black Tori Solutions in Einstein and 5D Gravity

The ’anholonomic frame’ method [1–3] is applied for constructing new classes of exact solutions of vacuum Einstein equations with off–diagonal metrics in 4D and 5D gravity. We examine several black tori solutions generated by anholonomic transforms with non–trivial topology of the Schwarzshild metric, which have a static toroidal horizon. We define ansatz and parametrizations which contain warp...

متن کامل

Non-isotopic Lagrangian Tori in Elliptic Surfaces

We construct the first example of an infinite family of homotopic but pairwise smoothly non-isotopic Lagrangian tori in the rational elliptic surface E(1) = P2#9P2. Furthermore, we show that any two of these tori are smoothly equivalent, i.e., there exists an orientation-preserving selfdiffeomorphism of E(1) that carries one torus to the other. Our construction can be generalized for many other...

متن کامل

Einstein Metrics on Complex Surfaces

Suppose M a compact manifold which admits an Einstein metric g which is Kähler with respect to some complex structure J . Is every other Einstein metric h on M also Kähler-Einstein? If the complex dimension of (M,J) is ≥ 3, the answer is generally no; for example, CP3 admits both the FubiniStudy metric, which is Kähler-Einstein, and a non-Kähler Einstein metric [2] obtained by appropriately squ...

متن کامل

Coherent sheaves on general K3 surfaces and tori

Let M be a K3 surface or an even-dimensional compact torus. We show that the category of coherent sheaves on M is independent from the choice of the complex structure, if this complex structure is generic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Geometry

سال: 2021

ISSN: ['1615-715X', '1615-7168']

DOI: https://doi.org/10.1515/advgeom-2020-0023