Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3
نویسندگان
چکیده
<p style='text-indent:20px;'>On a closed <inline-formula><tex-math id="M2">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-dimensional Riemannian manifold id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> we investigate the limit of Einstein-Lichnerowicz equation</p><p style='text-indent:20px;'><disp-formula> <label>1</label> <tex-math id="E1"> \begin{document}$ \begin{equation} \triangle_g u + h = f u^5 \frac{\theta a}{u^7} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>as momentum parameter id="M4">\begin{document}$ \theta \to 0 $\end{document}</tex-math></inline-formula>. Under positive mass assumption on id="M5">\begin{document}$ +h $\end{document}</tex-math></inline-formula>, prove that sequences solutions to this equation converge in id="M6">\begin{document}$ C^2(M) as id="M7">\begin{document}$ either zero or solution limiting id="M8">\begin{document}$ We also minimizing (1) constructed by author [<xref ref-type="bibr" rid="b15">15</xref>] converges uniformly id="M9">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
Elliptic Perturbations for Hammerstein Equations with Singular Nonlinear Term
We consider a singular elliptic perturbation of a Hammerstein integral equation with singular nonlinear term at the origin. The compactness of the solutions to the perturbed problem and, hence, the existence of a positive solution for the integral equation are proved. Moreover, these results are applied to nonlinear singular homogeneous Dirichlet problems.
متن کاملSingular Nonlinear Elliptic Equations in R
This paper deals with existence, uniqueness and regularity of positive generalized solutions of singular nonlinear equations of the form −∆u + a(x)u = h(x)u−γ in R where a, h are given, not necessarily continuous functions, and γ is a positive number. We explore both situations where a, h are radial functions, with a being eventually identically zero, and cases where no symmetry is required fro...
متن کاملSingular perturbation problems for nonlinear elliptic equations in degenerate settings
Here N ≥ 1, g(s) ∈ C(R,R) is a function with a subcritical growth, V (x) ∈ C(R ,R) is a positive function and 0 < ε 1. Among solutions of (0.1)ε, we are interested in concentrating families (uε) of solutions, which have the following behavior: (i) uε(x) has a local maximum at xε ∈ R and xε converges to some x0 ∈ R as ε → 0. (ii) rescaled function vε(y) = uε(εy + xε) converges as ε → 0 to a solu...
متن کاملSome remarks on singular solutions of nonlinear elliptic equations. I
We study strong maximum principles for singular solutions of nonlinear elliptic and degenerate elliptic equations of second order. An application is given on symmetry of positive solutions in a punctured ball using the method of moving planes. Mathematics Subject Classification (2000). 35J69, 58J05, 53C21, 35J60.
متن کاملOn a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in IR2. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2021
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2021069