منابع مشابه
Bounds of modulus of eigenvalues based on Stein equation
This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and t...
متن کاملComplex Eigenvalues 1. Complex Eigenvalues
In the previous note, we obtained the solutions to a homogeneous linear system with constant coefficients. x = A x under the assumption that the roots of its characteristic equation |A − λI| = 0, — i.e., the eigenvalues of A — were real and distinct. In this section we consider what to do if there are complex eigenval ues. Since the characteristic equation has real coefficients, its complex ro...
متن کامل1 Generating RSA Modulus : Part 2
A deterministic test for primality is a procedure that, given as input a number n, correctly returns the answer ‘composite’ or ‘prime’.1 To arrive at a probabilistic algorithm, we extend the notion of a deterministic primality test in two ways: We give it an extra “helper” string a, and we allow it to answer ‘?’, meaning “I don’t know”. Given input n and helper string a, such an output may corr...
متن کاملEigenvalues-based LSB steganalysis
So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...
متن کاملReal symmetric matrices 1 Eigenvalues and eigenvectors
A matrix D is diagonal if all its off-diagonal entries are zero. If D is diagonal, then its eigenvalues are the diagonal entries, and the characteristic polynomial of D is fD(x) = ∏i=1(x−dii), where dii is the (i, i) diagonal entry of D. A matrix A is diagonalisable if there is an invertible matrix Q such that QAQ−1 is diagonal. Note that A and QAQ−1 always have the same eigenvalues and the sam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1965
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1965-0176332-0