Eigenvalue bounds for non-selfadjoint Dirac operators

نویسندگان

چکیده

In this work we prove that the eigenvalues of $n$-dimensional massive Dirac operator $\mathscr{D}_0 + V$, $n\ge2$, perturbed by a possibly non-Hermitian potential $V$, are localized in union two disjoint disks complex plane, provided $V$ is sufficiently small with respect to mixed norms $L^1_{x_j} L^\infty_{\widehat{x}_j}$, for $j\in\{1,\dots,n\}$. massless case, instead discrete spectrum empty under same smallness assumption on and particular unperturbed operator, namely $\sigma(\mathscr{D}_0+V)=\sigma(\mathscr{D}_0)=\mathbb{R}$. The main tools employ an abstract version Birman-Schwinger principle, which include also study embedded eigenvalues, suitable resolvent estimates Schr\"odinger operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators

We consider quite general h-pseudodifferential operators on R with small random perturbations and show that in the limit h → 0 the eigenvalues are distributed according to a Weyl law with a probabality that tends to 1. The first author has previously obtained a similar result in dimension 1. Our class of perturbations is different. Résumé Nous considérons des opérateurs h-pseudodifférentiels as...

متن کامل

Spectral perturbation bounds for selfadjoint operators I∗

We give general spectral and eigenvalue perturbation bounds for a selfadjoint operator perturbed in the sense of the pseudo-Friedrichs extension. We also give several generalisations of the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using analyticity and monotonicity properties (rather than variational principles) and they are general enough to include ...

متن کامل

Eigenvalue Bounds for the Dirac Operator

A natural question in the study of geometric operators is that of how much information is needed to estimate the eigenvalues of an operator. For the square of the Dirac operator, such a question has at least peripheral physical import. When coupled to gauge fields, the lowest eigenvalue is related to chiral symmetry breaking. In the pure metric case, lower eigenvalue estimates may help to give ...

متن کامل

Spectral instability for non-selfadjoint operators∗

We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.

متن کامل

Non-selfadjoint Perturbations of Selfadjoint Operators in 2 Dimensions I

This is the first in a series of works devoted to small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the present work we treat the case when the classical flow of the unperturbed part is periodic and the strength ǫ of the perturbation is ≫ h (or sometimes only ≫ h2) and bounded from above by hδ for some δ > 0. We get a complete asymptotic descri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-021-02158-x