Efficient Sparse Coding Using Hierarchical Riemannian Pursuit
نویسندگان
چکیده
Sparse coding is a class of unsupervised methods for learning sparse representation the input data in form linear combination dictionary and code. This framework has led to state-of-the-art results various signal processing tasks. However, classical learn code based on alternating optimizations, usually without theoretical guarantees either optimality or convergence due non-convexity problem. Recent works with complete provide strong thanks development non-convex optimization. initial approaches learned problem sequentially an atom-by-atom manner, which long execution time. More recent have sought directly entire at once, substantially reduces associated recovery performance degraded finite number samples. In this paper, we propose efficient scheme two-stage The proposed leverages global local Riemannian geometry optimization facilitates fast implementation superb by We further prove that, high probability, can exactly recover any atom target Experiments both synthetic real-world verify efficiency robustness scheme. 1
منابع مشابه
Traffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملHierarchical Sparse Coding
A number of researchers have theorized that the brain may be employing some form of hierarchical model of features in visual processing. Nodes at the bottom of the hierarchy would represent local, spacially-oriented, specific features, while levels further up the hierarchy would detect increasingly complex, spatially-diffuse, and invariant features, with nodes in the uppermost layers correspond...
متن کاملRiemannian Sparse Coding for Positive Definite Matrices
Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...
متن کاملADMM Pursuit for Manifold Regularized Sparse Coding
In this paper, we propose an efficient ADMM-based algorithm for graph regularized sparse coding that explicitly takes into account the local manifold structure of the data. Specifically, the graph Laplacian representing the manifold structure is used as a regularizer, encouraging the resulting sparse codes to vary smoothly along the geodesics of the data manifold. By preserving locality, the ob...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2021
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2021.3093769