Efficient quantum key distribution over a collective noise channel
نویسندگان
چکیده
منابع مشابه
Robust polarization-based quantum key distribution over a collective-noise channel.
We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, sin...
متن کاملEfficient Quantum Key Distribution
We devise a simple modification that essentially doubles the efficiency of a well-known quantum key distribution scheme proposed by Bennett and Brassard (BB84). Our scheme assigns significantly different probabilities for the different polarization bases during both transmission and reception to reduce the fraction of discarded data. The actual probabilities used in the scheme are announced in ...
متن کاملNoise-resistant quantum key distribution protocol
We present the scheme of compatible quantum information analysis of the quantum key distribution (QKD) protocols, which give answers to the following questions: is it possible to improve the quantum bit error rate (QBER) of the 6-state protocol by employing more states, up to infinity, and can we essentially improve the QBER if the multidimensional Hilbert space with dimensionality more than 3 ...
متن کاملSide-channel-free quantum key distribution.
Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the rel...
متن کاملFault tolerant quantum key distribution protocol with collective random unitary noise
We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol does not need any collective quantum measurement or quantum memory. A security proof and a specific linear optical realization using spontaneous parametric down conversion are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2008
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.78.022321