Efficient Model Selection for Sparse Least-Square SVMs
نویسندگان
چکیده
منابع مشابه
Vector Quantization as Sparse Least Square Optimization
Vector quantization aims to form new vectors/matrices with shared values close to the original. It could compress data with acceptable information loss, and could be of great usefulness in areas like Image Processing, Pattern Recognition and Machine Learning. In recent years, the importance of quantization has been soaring as it has been discovered huge potentials in deploying practical neural ...
متن کاملModel Selection for Multi-class SVMs
In the framework of statistical learning, fitting a model to a given problem is usually done in two steps. First, model selection is performed, to set the values of the hyperparameters. Second, training results in the selection, for this set of values, of a function performing satisfactorily on the problem. Choosing the values of the hyperparameters remains a difficult task, which has only been...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملFast orthogonal least squares algorithm for efficient subset model selection
An efficient implementation of the orthogonal least squares algorithm for subset model selection is derived in this correspondence. Computational complexity of the algorithm is examined and the result shows that this new fast orthogonal least squares algorithm significantly reduces computational requirements.
متن کاملLeast Squares After Model Selection in High-dimensional Sparse Models
In this paper we study post-model selection estimators which apply ordinary least squares (ols) to the model selected by first-step penalized estimators, typically lasso. It is well known that lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that ols post lasso estimator performs at least as well as lasso in terms of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/712437