Efficient full-waveform inversion with normalized plane-wave data
نویسندگان
چکیده
منابع مشابه
Full waveform inversion of marine reflection data in the plane‐wave domain
Full waveform inversion of a p-r marine data set from the Gulf of Mexico provides estimates of the longwavelength P-wave background velocity, anisotropic seismic source, and three high-frequency elastic parameter refiectivities that explain 70% of the total seismic data and 90% of the data in an interval around the gas sand target. The forward simulator is based on a planewave viscoelastic mode...
متن کاملFull waveform inversion with extrapolated low frequency data
The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging ...
متن کاملFull waveform inversion with image-guided gradient
The objective of seismic full waveform inversion (FWI) is to estimate a model of the subsurface that minimizes the difference between recorded seismic data and synthetic data simulated for that model. Although FWI can yield accurate and high-resolution models, multiple problems have prevented widespread application of this technique in practice. First, FWI is computationally intensive, in part ...
متن کاملFull Waveform Inversion with Total Variation Regularization
Waveform inverse problems are mathematically ill-posed and, therefore, regularization methods are required to obtain stable and unique solutions. The Total Variation (TV) regularization method is used to resolve sharp interfaces obtaining solutions where edges and discontinuities are preserved. TV regularization accomplishes these goals by imposing sparsity on the gradient of the model paramete...
متن کاملFull waveform inversion with dynamic image warping
Full waveform inversion (FWI) can generate high-resolution subsurface models, but often suffers from an objective function with local minima caused mainly by an absence of low frequencies in seismograms. These local minima cause cycle skipping when the initial model for FWI is far from the true model. To avoid cycle skipping, traveltime inversion is often used to compute initial models for FWI....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 2015
ISSN: 1365-246X,0956-540X
DOI: 10.1093/gji/ggu498