Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Estimation for the Cox Model with Interval Censoring

The maximum likelihood estimator (MLE) for the proportional hazards model with current status data is studied. It is shown that the MLE for the regression parameter is asymptotically normal with vn-convergence rate and achieves the information bound, even though the MLE for the baseline cumulative hazard function only converges at nI/3 rate. Estimation of the asymptotic variance matrix for the ...

متن کامل

Identification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model

Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...

متن کامل

Efficient estimation of the partly linear additive Cox model

The partly linear additive Cox model is an extention of the (linear) Cox model and allows flexible modeling of covariate effects semiparametrically. We study asymptotic properties of the maximum partial likelihood estimator of this model with right-censored data using polynomial splines. We show that, with a range of choices of the smoothing parameter (the number of spline basis functions) requ...

متن کامل

Efficient quantile regression with auxiliary information

We discuss efficient estimation in quantile regression models where the quantile regression function is modeled parametrically. Additionally we assume that auxiliary information is available in the form of a conditional constraint. This is, for example, the case if the mean regression function or the variance function can be modeled parametrically, e.g. by a line or a polynomial. In this paper ...

متن کامل

Prognostic factors of survival of patients with oesophageal cancer under radiotherapy using cox regression model

oesophageal cancer is one of the most fatal cancer in human in spite of high incidence in the north of Iran and poor prognosis,there is not information regarding prognostic factors in this area.this study was conducted to determine prognodtic factors of the survival of patients with oesophageal cancer under radiotherapy.We conducted a descriptive-analytical study using historical cohort that ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2016

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2015.1044090