Effective genericity and differentiability
نویسندگان
چکیده
منابع مشابه
Effective genericity and differentiability
We prove that a real x is 1-generic if and only if every differentiable computable function has continuous derivative at x . This provides a counterpart to recent results connecting effective notions of randomness with differentiability. We also consider multiply differentiable computable functions and polynomial time computable functions. 2010 Mathematics Subject Classification 03E15; 03F60 (p...
متن کاملEffective Genericity, Δ-regularity and Strong Noether Position
We show that the concept of strong Noether position for a polynomial ideal I CP is equivalent to δ-regularity and thus related to Pommaret bases. In particular, we provide explicit Pommaret bases for two of the ideal sequences used in Hashemi’s definition of strong Noether position and alternative proofs for a number of his statements. Finally, we show that one consequence of δ-regularity is th...
متن کاملFréchet directional differentiability and Fréchet differentiability
Zaj́ıček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any realvalued function on a normed linear space, the se...
متن کاملCosets and genericity
In a connected group of finite Morley rank in which the generic element belongs to a connected nilpotent subgroup, proper normalizing cosets of definable subgroups are not generous. We explain why this is true and what consequences this has on an abstract theory of Weyl groups in groups of finite Morley rank. The only known infinite simple groups of finite Morley rank are the simple algebraic g...
متن کاملOuter models and genericity
1. Introduction Why is forcing the only known method for constructing outer models of set theory? If V is a standard transitive model of ZFC, then a standard transitive model W of ZFC is an outer model of V if V ⊆ W and V ∩ OR = W ∩ OR. Is every outer model of a given model a generic extension? At one point Solovay conjectured that if 0 # exists, then every real that does not construct 0 # lies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Logic and Analysis
سال: 2014
ISSN: 1759-9008
DOI: 10.4115/jla.2014.6.4