Effect of Retained Austenite on Strength and Elongation in Metastable Austenitic Stainless Steels
نویسندگان
چکیده
منابع مشابه
Delayed Cracking of Metastable Austenitic Stainless Steels after Deep Drawing
In metastable austenitic stainless steels, strain-induced martensitic transformation during plastic deformation enhances work hardening of the material, increasing its strength and in some cases also ductility.1,2) The presence of α’-martensite, however, may increase the susceptibility of these materials to hydrogen embrittlement phenomena, for example delayed cracking.3–6) Delayed cracking can...
متن کاملNeural network model of creep strength of austenitic stainless steels
The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature . The method involved a neural network analysis of a vast and general database assembled from published data. The outputs of the model have been assessed against known metallurgical trends an...
متن کاملY Studies on Austenitic Stainless Steels
Abstract--In this investigation, the fracture surfaces of SS 304 and SS 316 austenitic steels were analysed using the X-ray fractography technique. In both cases, a decrease in the austenite content was observed at the fracture surface as a result of deformation induced martensite, indicating a linear relation with Km~ within the stable crack growth region. The presence of this martensite was f...
متن کاملLow-Temperature Carburization of Austenitic Stainless Steels
LOW-TEMPERATURE CARBURIZATION is a gaseous carburization process performed at atmospheric pressure, at temperatures where the kinetics of substitutional diffusion are very slow. Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon, without the formation of carbides. The surface must be activated, by modification and remova...
متن کاملMartensite ? austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel
A generalized phase transformation kinetics model is used to understand the martensite to austenite transformation in a cold-rolled and annealed metastable AISI 301LN ultrafine-grained austenitic stainless steel. The model shows that the presence of interstitial nitrogen and heavy cold-rolling is important to promote fast transformation kinetics, through rapid nitrogen-diffusion and austenite n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tetsu-to-Hagane
سال: 1997
ISSN: 0021-1575,1883-2954
DOI: 10.2355/tetsutohagane1955.83.5_341