Edge-dominating cycles, k-walks and Hamilton prisms in 2K2-free graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton cycles in prisms over graphs

The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be a good measure how close a graph is to being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of hamiltonian prisms.

متن کامل

Hamilton cycles in prisms

The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. c © ???...

متن کامل

HAMILTON `-CYCLES IN k-GRAPHS

We say that a k-uniform hypergraph C is an `-cycle if there exists a cyclic ordering of the vertices of C such that every edge of C consists of k consecutive vertices and such that every pair of adjacent edges (in the natural ordering of the edges) intersects in precisely ` vertices. We prove that if 1 ≤ ` < k and k − ` does not divide k then any k-uniform hypergraph on n vertices with minimum ...

متن کامل

Edge-disjoint Hamilton cycles in graphs

In this paper we give an approximate answer to a question of Nash-Williams from 1970: we show that for every α > 0, every sufficiently large graph on n vertices with minimum degree at least (1/2 + α)n contains at least n/8 edge-disjoint Hamilton cycles. More generally, we give an asymptotically best possible answer for the number of edge-disjoint Hamilton cycles that a graph G with minimum degr...

متن کامل

Edge-disjoint Hamilton cycles in random graphs

We show that provided log n/n ≤ p ≤ 1 − n−1/4 log n we can with high probability find a collection of bδ(G)/2c edge-disjoint Hamilton cycles in G ∼ Gn,p, plus an additional edge-disjoint matching of size bn/2c if δ(G) is odd. This is clearly optimal and confirms, for the above range of p, a conjecture of Frieze and Krivelevich.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2016

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216516420116