Economic variable selection

نویسندگان

چکیده

Regression plays a central role in the discipline of statistics and is primary analytic technique many research areas. Variable selection classical major problem for regression. This article emphasizes economic aspect variable selection. The formulated terms cost predictors to be purchased future use: only subset covariates used model will need purchased. leads decision-theoretic formulation problems, which includes as well their effect. We adopt Bayesian perspective propose two approaches address uncertainty about parameters. These approaches, termed restricted extended lead us rethink averaging. From an objective or robust Bayes point view, former preferred. proposed method applied three popular datasets illustration. L'analyse de régression est un véritable pilier la statistique et constitue, sans contexte, principale analytique dans nombreux domaines recherche. La sélection variables certainement l'un ses problèmes défis communément rencontrés. Cette étude examine ce problème à travers le prisme l'aspect économique. Plus précisément, formulé en termes coût des prédicteurs acheter pour une utilisation : seul sous-ensemble covariables utilisées modèle devra être acheté. Ainsi, devient théorie décision qui inclut ainsi que leurs effets. En adoptant bayésienne, les auteurs travail proposent deux approches traiter l'incertitude au sujet du paramètres. Ces approches, dites restreintes étendues, incitent revisiter concepts moyennage modèles (ou intégration pondérée modèles). D'un vue bayesien objectif ou robuste, première approche préférable seconde. guise d'illustration, méthode proposée mise pratique sur trois ensembles données classiques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Variable Selection for Nowcasting Economic Time Series

We consider the problem of short-term time series forecasting (nowcasting) when there are more possible predictors than observations. Our approach combines three Bayesian techniques: Kalman filtering, spike-and-slab regression, and model averaging. We illustrate this approach using search engine query data as predictors for consumer sentiment and gun sales.

متن کامل

High Dimensional Variable Selection.

This paper explores the following question: what kind of statistical guarantees can be given when doing variable selection in high dimensional models? In particular, we look at the error rates and power of some multi-stage regression methods. In the first stage we fit a set of candidate models. In the second stage we select one model by cross-validation. In the third stage we use hypothesis tes...

متن کامل

Bayesian Shrinkage Variable Selection

We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...

متن کامل

Bayesian recursive variable selection

In this work we introduce a new model space prior for Bayesian variable selection in linear regression. This prior is designed based on a recursive constructive procedure that randomly generates models by including variables in a stagewise fashion. We provide a recipe for carrying out Bayesian variable selection and model averaging using this prior, and show that it possesses several desirable ...

متن کامل

Rank-based variable selection

This note considers variable selection in the robust linear model via R-estimates. The proposed rank-based approach is a generalization of the penalized least squares estimators where we replace the least squares loss function with Jaeckel’s (1972) dispersion function. Our rank-based method is robust to outliers in the errors and has roots in traditional nonparametric statistics for simple loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian journal of statistics

سال: 2021

ISSN: ['0319-5724', '1708-945X']

DOI: https://doi.org/10.1002/cjs.11675