Dynamical Stability of a 3-DOF Auto-Parametric Vibrating System
نویسندگان
چکیده
Abstract Purpose This article concentrates on the oscillating movement of an auto-parametric dynamical system comprising a damped Duffing oscillator and associated simple pendulum in addition to rigid body as main secondary systems, respectively. Methods According generalized coordinates, controlling equations motion are derived utilizing Lagrange's approach. These solved applying perturbation methodology multiple scales up higher orders approximation achieve further precise unique outcomes. The fourth-order Runge–Kutta algorithm is employed obtain numerical outcomes governing system. Results comparison between both solutions demonstrates their high level consistency highlights great accuracy adopted analytical strategy. Despite conventional nature applied methodology, obtained results for studied considered new. Conclusions In light solvability criteria, all resonance scenarios classified, which two fundamental exterior resonances examined simultaneously with one interior resonances. Therefore, modulation achieved. conditions Routh–Hurwitz inspect stability/instability regions analyze them accordance steady-state case. For various factors structure, temporary history solutions, curves terms adjusted amplitudes phases, stability zones graphically presented discussed. Applications current study will be interest wide range experts fields mechanical aerospace technology, well those working reduce rotors vibrations attenuate vibration caused by swinging structures.
منابع مشابه
stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Admissible Vectors of a Covariant Representation of a Dynamical System
In this paper, we introduce admissible vectors of covariant representations of a dynamical system which are extensions of the usual ones, and compare them with each other. Also, we give some sufficient conditions for a vector to be admissible vector of a covariant pair of a dynamical system. In addition, we show the existence of Parseval frames for some special subspaces of $L^2(G)$ related to...
متن کامل3-DOF Trilateral Teleoperation Using a Pair of 1-DOF and 2-DOF Haptic Devices: Stability Analysis
Humans are usually better than autonomous robots in operating in complex environments. In bilateral teleoperation, to take full advantage of the human’s intelligence, experience, and sensory inputs for performing a dexterous task, a possibility is to use the two hands of the user to manipulate two master haptic devices in order to control a slave robot with multiple degrees-of-freedom (DOF); th...
متن کاملAbsolute Stability of 3-DOF Bilateral Haptic Systems
A 3-degrees-of-freedom (DOF) bilateral haptic system can be modeled as an 2-port network where each port connects to a termination defined by 3 inputs and 3 outputs. The stability analysis of such systems is not trivial due to dynamic coupling across the different DOFs of the robots, the human operators, and the physical/virtual environments, and unknown dynamics of the human operators and the ...
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of vibration engineering & technologies
سال: 2022
ISSN: ['2523-3920', '2523-3939']
DOI: https://doi.org/10.1007/s42417-022-00808-1