Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation
نویسندگان
چکیده
منابع مشابه
The potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation
Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کاملthe potential of human-derived periodontal ligament stem cells to osteogenic differentiation: an in vitro investigation
background: periodontal ligament stem cells (pdlscs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. materials and methods: this study examined the effects of dexamethasone (dex) on human pdlscs in vitro. pdlscs obtained from the roots of patient’s teeth were cultured with dex (0.01 μm), a...
متن کاملOsteogenic differentiation of human periodontal ligament stem cells expressing lentiviral NEL-like protein 1.
NEL-like protein 1 (NELL1) is a newly identified secreted protein involved in craniosynostosis and has been found to promote osteogenic differentiation of mesenchymal stem cells. The objective of this study was to investigate the effect of NELL1 on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the potential underlying mechanism. hPDLSCs underwent lentivirus-m...
متن کاملMicroRNA-214 Suppresses Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting ATF4
Periodontitis is the main cause of adult tooth loss. Stem cell-based tissue engineering has become a promising therapy for periodontitis treatment. To date, human periodontal ligament stem cells (hPDLSCs) have been shown to be a favorable source for tissue engineering, but modulatory mechanisms of hPDLSCs remain unclear. Approximately 60% of mammalian genes are the targets of over 2000 miRNAs i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stem Cell Research & Therapy
سال: 2021
ISSN: 1757-6512
DOI: 10.1186/s13287-020-02123-6