Dyamic Stacked Topic Model
نویسندگان
چکیده
منابع مشابه
A Stacked, Voted, Stacked Model for Named Entity Recognition
This paper investigates stacking and voting methods for combining strong classifiers like boosting, SVM, and TBL, on the named-entity recognition task. We demonstrate several effective approaches, culminating in a model that achieves error rate reductions on the development and test sets of 63.6% and 55.0% (English) and 47.0% and 51.7% (German) over the CoNLL-2003 standard baseline respectively...
متن کاملTopic Segmentation with a Structured Topic Model
We present a new hierarchical Bayesian model for unsupervised topic segmentation. This new model integrates a point-wise boundary sampling algorithm used in Bayesian segmentation into a structured topic model that can capture a simple hierarchical topic structure latent in documents. We develop an MCMC inference algorithm to split/merge segment(s). Experimental results show that our model outpe...
متن کاملThermo - structural Model of Stacked Field - programmable
A new 3-D full-scale thermo-structural finite element model of two-stack FPGA with TSVs, which is developed from an experimentally validated single-stack FPGA model, is proposed. Typical 3-D distributions and evolutions of temperature and von Mises stress on both the active layers and TSVs are presented.
متن کاملAnother Hierarchical Topic Model
We describe a hierarchical topic model. We assume that there are various levels of specificity in a document collection. For example, a collection of mailing list posts might be organized according to sentence, paragraph, post and thread. We describe a model that captures the structure at each level of the hierarchy. We use a trace norm penalty on a matrix composed of natural parameters for the...
متن کاملBilingual Segmented Topic Model
This study proposes the bilingual segmented topic model (BiSTM), which hierarchically models documents by treating each document as a set of segments, e.g., sections. While previous bilingual topic models, such as bilingual latent Dirichlet allocation (BiLDA) (Mimno et al., 2009; Ni et al., 2009), consider only cross-lingual alignments between entire documents, the proposed model considers cros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japanese Society for Artificial Intelligence
سال: 2016
ISSN: 1346-0714,1346-8030
DOI: 10.1527/tjsai.