Duality of fully measurable grand Lebesgue space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality for Borel Measurable Cost Functions

We consider the Monge-Kantorovich transport problem in an abstract measure theoretic setting. Our main result states that duality holds if c : X × Y → [0,∞) is an arbitrary Borel measurable cost function on the product of Polish spaces X,Y . In the course of the proof we show how to relate a non-optimal transport plan to the optimal transport costs via a “subsidy” function and how to identify t...

متن کامل

Lebesgue measure in the infinite - dimensional space ?

We consider the sigma-finite measures in the space of vector-valued distributions on the manifold X with characteristic functional

متن کامل

Extension of Hysteresis operators of Preisach-type to real, Lebesgue measurable functions

Functions in Lploc[0,∞) where 1 ≤ p ≤ ∞ can be considered as inputs to linear systems. However, hysteresis operators of Preisach type have only been defined on much smaller space of regulated (or Baire) functions. In this paper, we re-define Play operators so that they are well defined for real valued measurable functions. We show that this definition coincides with the older definition for con...

متن کامل

Lower Bounds for Approximation of Some Classes of Lebesgue Measurable Functions by Sigmoidal Neural Networks

We propose a general method for estimating the distance between a compact subspace K of the space L([0, 1]) of Lebesgue measurable functions defined on the hypercube [0, 1], and the class of functions computed by artificial neural networks using a single hidden layer, each unit evaluating a sigmoidal activation function. Our lower bounds are stated in terms of an invariant that measures the osc...

متن کامل

The Hahn-banach Theorem Implies the Existence of a Non Lebesgue-measurable Set

§0. Introduction. Few methods are known to construct non Lebesgue-measurable sets of reals: most standard ones start from a well-ordering of R, or from the existence of a non-trivial ultrafilter over ω, and thus need the axiom of choice AC or at least the Boolean Prime Ideal theorem BPI (see [5]). In this paper we present a new way for proving the existence of non-measurable sets using a conven...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of A. Razmadze Mathematical Institute

سال: 2017

ISSN: 2346-8092

DOI: 10.1016/j.trmi.2016.12.003