Duality for Algebraic Linear Programming

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Duality Results in Grey Linear Programming Problem

Different approaches are presented to address the uncertainty of data and appropriate description of uncertain parameters of linear programming models. One of them is to use the grey systems theory in modeling such problem. Especially, recently, grey linear programming has attracted many researchers. In this paper, a kind of linear programming with grey coefficients is discussed. Introducing th...

متن کامل

3.1 Linear Programming Duality

In the previous few lectures we have seen examples of LP-rounding, a method for obtaining approximation algorithms that involves solving a linear programming relaxation of the problem at hand and rounding the solution. In the last lecture we also discussed the basic theory of LP-duality. Today we will apply this theory to obtain a second LP-based technique for obtaining approximation algorithms...

متن کامل

Duality in Linear Programming

1≤i≤m yibi. Now let P = {x ∈ (R) | Ax ≤ b and x ≥ 0}. Suppose x is a feasible point for our primal linear programming problem, so x ∈ P , i.e., Ax ≤ b and x ≥ 0. Also suppose we can choose y1, . . . , ym defining an m-covector y such that (yA)i ≥ ci and yi ≥ 0 for i = 1, . . . , n. Then c x ≤ yAx, and we have yAx ≤ yb, so altogether we have cx ≤ yAx ≤ yb. We see that yAx and yb are both upper-b...

متن کامل

Duality in Linear Programming

In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow prices give us directly the marginal worth of an additional unit of any of the resources. Second, when an activity is ‘‘priced out’’ using these shadow prices, the opportunity cost of allocating resources to that activity ...

متن کامل

Linear Programming Duality

Suppose that we also suggested that the optimal solution might be attained at (x1, x2) = (1/2, 5/4), achieving an objective value equal to 2x1 + 3x2 = 19/4. We now construct a certificate for the optimality of the hint. The problem is asking us to maximize 2x1 + 3x2 (with x1, x2 non-negative), under some constraints. Let’s start by considering constraint 1 : since 4x1 + 8x2 ≤ 12, we definitely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1980

ISSN: 0024-3795

DOI: 10.1016/0024-3795(80)90004-x