Duality and bicrystals on infinite binary matrices
نویسندگان
چکیده
The set of finite binary matrices a given size is known to carry type $A$ bicrystal structure. We first review this classical construction, explain how it yields short proof the equality between Kostka polynomials and one-dimensional sums together with natural generalisation $2M-X$ Pitman transform. Next, we show that, once relevant formalism on families infinite introduced, particular case much more general phenomenon. Each such family proved be endowed Kac–Moody tricrystal structures defined from root systems. Moreover, give an explicit decomposition these multicrystals, reminiscent characters yielding Cauchy identities.
منابع مشابه
Infinite Gammoids: Minors and Duality
This sequel to Afzali Borujeni et. al. (2015) considers minors and duals of infinite gammoids. We prove that the class of gammoids defined by digraphs not containing a certain type of substructure, called an outgoing comb, is minor-closed. Also, we prove that finite-rank minors of gammoids are gammoids. Furthermore, the topological gammoids of Carmesin (2014) are proved to coincide, as matroids...
متن کاملDuality of Infinite Graphs
Some basic results on duality of infinite graphs are established and it is proven that a block has a dual graph if and only if it is planar and any two vertices are separated by a finite edge cut. Also, the graphs having predual graphs are characterized completely and it is shown that if G* is a dual and predual graph of G, then G and G* can be represented as geometric dual graphs. The uniquene...
متن کاملDuality in Infinite Graphs
The adaption of combinatorial duality to infinite graphs has been hampered by the fact that while cuts (or cocycles) can be infinite, cycles are finite. We show that these obstructions fall away when duality is reinterpreted on the basis of a ‘singular’ approach to graph homology, whose cycles are defined topologically in a space formed by the graph together with its ends and can be infinite. O...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملOn duality gap in binary quadratic programming
We present in this paper new results on the duality gap between the binary quadratic optimization problem and its Lagrangian dual or semidefinite programming relaxation. We first derive a necessary and sufficient condition for the zero duality gap and discuss its relationship with the polynomial solvability of the primal problem. We then characterize the zeroness of the duality gap by the dista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’Institut Henri Poincaré D
سال: 2023
ISSN: ['2308-5827', '2308-5835']
DOI: https://doi.org/10.4171/aihpd/165