Dual lattices for non-strictly proper systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback Analysis for Non-Strictly-Proper Systems

= Ax + Bul Yl = Cx + Dul P(s) = C(sI-A)-IB4-D and compensator i~ = Fz + Gu2 y2 = Hz + Ku2 C(s) = H ( s I F ) I G 4K. (i)

متن کامل

Loop Transfer Recovery for Non-strictly Proper Plants*

Observer based controllers for loop transfer recovery of non-strictly proper systems which are left invertible and of minimum phase are considered. A complete analysis of loop transfer recovery problem using either full or reduced order observer based controller is provided. Key Words-Robust control, loop transfer recovery.

متن کامل

Loop Transfer Recovery for General Nonminimum Phase Non- Strictly Proper Systems, Part 2-design*

This part focuses on the design of full order observer based controllers for the recovery of target loop transfer function or sensitivity and complimentary sensitivity functions for general non-strictly proper, not necessarily left invertible and not necessarily minimum phase systems. For general systems, loop transfer recovery is not completely feasible although there exists considerable amoun...

متن کامل

LOOP TRANSFER RECOVERY FOR GENERAL NONMINIMUM PHASE NON. STRICTLY PROPER SYSTEMS, PART l-ANALYSIS*

A complete analysis of loop transfer recovery (LTR) using full order observer based controllers for general nonstrictly proper systems is considered. The given system need not be left invertible and of minimum phase. Our analysis of LTR focuses on four fundamental issues. The first issue is concerned with what can and what cannot be achieved for a given system and for an arbitrarily specified t...

متن کامل

A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems

We consider stability and robustness of feedback systems, where plant and compensator need not be strictly proper. In an earlier paper [1] we described a functional R∞ which, when negative, guarantees closed-loop instability as a result of parasitic interactions in the feedback loop. In our main result, Theorem 5, we prove that, when R∞ > 0, there exist perturbations of plant and compensator fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.364