DScribe: Library of descriptors for machine learning in materials science
نویسندگان
چکیده
منابع مشابه
Theory-Guided Machine Learning in Materials Science
Materials scientists are increasingly adopting the use of machine learning tools to discover hidden trends in data and make predictions. Applying concepts from data science without foreknowledge of their limitations and the unique qualities of materials data, however, could lead to errant conclusions. The differences that exist between various kinds of experimental and calculated data require c...
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولHLearn: A Machine Learning Library for Haskell
HLearn is a Haskell-based library for machine learning. Its distinguishing feature is that it exploits the algebraic properties of learning models. Every model in the library is an instance of the HomTrainer type class, which ensures that the batch trainer is a monoid homomorphism. This is a restrictive condition that not all learning models satisfy; however, it is useful for two reasons. First...
متن کاملBrainy: A Machine Learning Library
Brainy is a newly created cross-platform machine learning library written in Java. It defines interfaces for common types of machine learning tasks and implementations of the most popular algorithms. Brainy utilizes a complex mathematical infrastructure which is also part of the library. The main difference compared to other ML libraries is the sophisticated system for feature definition and ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Physics Communications
سال: 2020
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2019.106949