Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable and reversible drug control of protein production via a self-excising degron

An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe small molecule-assisted shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, resulting in the production of an untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing r...

متن کامل

Using the DHFR heat-inducible degron for protein inactivation in Schizosaccharomyces pombe.

Inactivating a specific protein in vivo can yield important information about its function. One strategy previously developed in Saccharomyces cerevisiae by the Varshavsky group involves fusing a degron, derived from mouse dihydrofolate reductase, to the N-terminus of the target protein, which thereby confers temperature-sensitive degradation at the restrictive temperature. We describe here the...

متن کامل

Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors

Synthetic receptors provide a powerful experimental tool for generation of designer cells capable of monitoring the environment, sensing specific input signals, and executing diverse custom response programs. To advance the promise of cellular engineering, we have developed a class of chimeric receptors that integrate a highly programmable and portable nuclease-deficient CRISPR/Cas9 (dCas9) sig...

متن کامل

Engineering robust and tunable spatial structures with synthetic gene circuits

Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circ...

متن کامل

A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2017

ISSN: 2041-1723

DOI: 10.1038/s41467-017-01222-y