DReAM: Deep Recursive Attentive Model for Anomaly Detection in Kernel Events

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multior high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsisten...

متن کامل

Kernel-Based Anomaly Detection in Hyperspectral Imagery

In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainl...

متن کامل

A timeliness-guaranteed kernel model-DREAM kernel-and implementation techniques

An essential building-block for construction of future real-time computer systems (RTCS’s) is a timeliness-guaranteed operating system. The first co-author recently formulated a model of an operating system kernel which can support both real-time processes and new-style real-time objects with guaranteed timely services. The model has been named the DREAM kernel. The key emphasis in formulating ...

متن کامل

Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm

Real-time anomaly detection has received wide attention in remote sensing image processing because many moving targets must be detected on a timely basis. A widely-used anomaly detection algorithm is the Reed-Xiaoli (RX) algorithm that was proposed by Reed and Yu. The kernel RX algorithm proposed by Kwon and Nasrabadi is a nonlinear version of the RX algorithm and outperforms the RX algorithm i...

متن کامل

Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2897122