Doubly Biased Maker-Breaker Connectivity Game

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Biased Maker-Breaker Connectivity Game

In this paper we study the (a : b) Maker-Breaker Connectivity game, played on the edge set of the complete graph on n vertices. We determine the winner for almost all values of a and b.

متن کامل

Generating random graphs in biased Maker-Breaker games

We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b = Θ( n lnn), playing a (1 : b) game on E(Kn), Maker can build a graph which contains copies of all spanning trees having ma...

متن کامل

Winning fast in fair biased Maker-Breaker games

We study the (a : a) Maker-Breaker games played on the edge set of the complete graph on n vertices. In the following four games – perfect matching game, Hamiltonicity game, star factor game and path factor game, our goal is to determine the least number of moves which Maker needs in order to win these games. Moreover, for all games except for the star factor game, we show how Red can win in th...

متن کامل

Fast embedding of spanning trees in biased Maker-Breaker games

Given a tree T = (V,E) on n vertices, we consider the (1 : q) Maker-Breaker tree embedding game Tn. The board of this game is the edge set of the complete graph on n vertices. Maker wins Tn if and only if he is able to claim all edges of a copy of T . We prove that there exist real numbers α, ε > 0 such that, for sufficiently large n and for every tree T on n vertices with maximum degree at mos...

متن کامل

A threshold for the Maker-Breaker clique game

We look at Maker-Breaker k-clique game played on the edge set of the random graph G(n, p). In this game, two players, Maker and Breaker, alternately claim unclaimed edges of G(n, p), until all the edges are claimed. Maker wins if he claims all the edges of a k-clique; Breaker wins otherwise. We determine that the property that Maker can win this game has a threshold at n− 2 k+1 , for all k > 3....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2129