Dopamine signals mimic reward prediction errors
نویسندگان
چکیده
منابع مشابه
Dopamine Ramps Are a Consequence of Reward Prediction Errors
Temporal difference learning models of dopamine assert that phasic levels of dopamine encode a reward prediction error. However, this hypothesis has been challenged by recent observations of gradually ramping stratal dopamine levels as a goal is approached. This note describes conditions under which temporal difference learning models predict dopamine ramping. The key idea is representational: ...
متن کاملUpdating dopamine reward signals
Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subje...
متن کاملThe feedback-related negativity signals salience prediction errors, not reward prediction errors.
Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of...
متن کاملDopamine reward prediction error coding
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction er...
متن کاملOrbitofrontal neurons signal reward predictions, not reward prediction errors
Neurons in the orbitofrontal cortex (OFC) fire in anticipation of and during rewards. Such firing has been suggested to encode reward predictions and to account in some way for the role of this area in adaptive behavior and learning. However, it has also been reported that neural activity in OFC reflects reward prediction errors, which might drive learning directly. Here we tested this question...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Neuroscience
سال: 2013
ISSN: 1097-6256,1546-1726
DOI: 10.1038/nn.3448