Dominator Chromatic Number of Middle and Total Graphs
نویسندگان
چکیده
منابع مشابه
Dominator Chromatic Number of Middle and Total Graphs
Dominator chromatic number of middle and total graphs of various graph families is found in this paper. Also these parameters are compared with dominator chromatic number of their respective graph families.
متن کاملtotal dominator chromatic number of a graph
given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...
متن کاملTotal-Chromatic Number and Chromatic Index of Dually Chordal Graphs
A graph is dually chordal if it is the clique graph of a chordal graph. Alternatively, a graph is dually chordal if it admits a maximum neighbourhood order. This class generalizes known subclasses of chordal graphs such as doubly chordal graphs, strongly chordal graphs and interval graphs. We prove that Vizing's total-colour conjecture holds for dually chordal graphs. We describe a new heuristi...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/7891-1287