Domain-domain associations in cystic fibrosis transmembrane conductance regulator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain-domain associations in cystic fibrosis transmembrane conductance regulator.

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a chloride channel whose activity requires protein kinase A-dependent phosphorylation of an intracellular regulatory domain (R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs). To identify potential sites of domain-domain interaction within CFTR, we expressed...

متن کامل

Cystic Fibrosis Transmembrane Conductance Regulator

Description The cystic fibrosis transmembrane regulator (CFTR) gene codes for the CFTR protein; a chloride channel protein that helps in the transportation of chloride ions and water molecules across the cell membranes of lungs, liver, pancreas, and skin. CFTR is a member of the ATP-binding cassette family of membrane transport proteins, but appears to be unique within this family by functionin...

متن کامل

Cystic Fibrosis Transmembrane Conductance Regulator

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel exhibits lyotropic anion selectivity. Anions that are more readily dehydrated than Cl exhibit permeability ratios (P(S)/P(Cl)) greater than unity and also bind more tightly in the channel. We compared the selectivity of CFTR to that of a synthetic anion-selective membrane [poly(vinyl chloride)-tridodecylmethylammonium chl...

متن کامل

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis [4] (CF). Tsui?s research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in cell membranes in epithelial tissues and affec...

متن کامل

Localization of Cystic Fibrosis Transmembrane Conductance Regulator

We have used in situ hybridization to localize expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the human gastrointestinal tract and associated organs. The stomach exhibits a low level ofCFTR expression throughout gastric mucosa. In the small intestine, expression is relatively high in the mucosal epithelium, with a decreasing gradient of expression along the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Physiology-Cell Physiology

سال: 2002

ISSN: 0363-6143,1522-1563

DOI: 10.1152/ajpcell.00337.2001