Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide within the rat hippocampal CA1 area may play a role in morphine tolerance

Hippocampus as part of the limbic system plays an important role in abused drugs-induced memory. The role of glutamate receptor within the hippocampal CA1 area in morphine-induced memory has also been postulated. Previous studies indicated that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effects of intra-CA1 area injections...

متن کامل

Nitric oxide within the rat hippocampal CA1 area may play a role in morphine tolerance

Hippocampus as part of the limbic system plays an important role in abused drugs-induced memory. The role of glutamate receptor within the hippocampal CA1 area in morphine-induced memory has also been postulated. Previous studies indicated that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effects of intra-CA1 area injections...

متن کامل

A molecular framework for auxin-mediated initiation of flower primordia.

A classical role of the hormone auxin is in the formation of flowers at the periphery of the reproductive shoot apex. Mutants in regulators of polar auxin transport or in the auxin-responsive transcription factor MONOPTEROS (MP) form naked inflorescence "pins" lacking flowers. How auxin maxima and MP direct initiation of flower primordia is poorly understood. Here, we identify three genes whose...

متن کامل

Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.

In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plant Signaling & Behavior

سال: 2009

ISSN: 1559-2324

DOI: 10.4161/psb.4.10.9715