Diverse reduct subspaces based co-training for partially labeled data
نویسندگان
چکیده
منابع مشابه
Diverse reduct subspaces based co-training for partially labeled data
Keywords: Rough set theory Markov blanket Attribute reduction Rough co-training Partially labeled data Rough set theory is an effective supervised learning model for labeled data. However, it is often the case that practical problems involve both labeled and unlabeled data, which is outside the realm of traditional rough set theory. In this paper, the problem of attribute reduction for partiall...
متن کاملVirtual Evidence for Training Speech Recognizers Using Partially Labeled Data
Collecting supervised training data for automatic speech recognition (ASR) systems is both time consuming and expensive. In this paper we use the notion of virtual evidence in a graphical-model based system to reduce the amount of supervisory training data required for sequence learning tasks. We apply this approach to a TIMIT phone recognition system, and show that our VE-based training scheme...
متن کاملLearning from partially labeled data
The Problem: Learning from data with both labeled training points (x,y pairs) and unlabeled training points (x alone). For the labeled points, supervised learning techniques apply, but they cannot take advantage of the unlabeled points. On the other hand, unsupervised techniques can model the unlabeled data distribution, but do not exploit the labels. Thus, this task falls between traditional s...
متن کاملCombining Labeled and Unlabeled Data with Co - Training yAvrim
We consider the problem of using a large unla-beled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the task of learning to classify web pages. For example, the description of a web page can be partitio...
متن کاملLearning Α-integrationwith Partially-labeled Data
Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2011
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2011.05.006