Divergence-preserving geodesic symmetries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic-Preserving Polygon Simplification

Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-todescribe linear-time method to replace an input polyg...

متن کامل

Symmetries in Connection Preserving Deformations

We wish to show that the root lattice of Bäcklund transformations of the qanalogue of the third and fourth Painlevé equations, which is of type (A2 +A1) , may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable trans...

متن کامل

Increasing Symmetry Breaking by Preserving Target Symmetries

Breaking the exponential number of all symmetries of a constraint satisfaction problem is too costly. In practice, we often aim at breaking a subset of the symmetries efficiently, which we call target symmetries. In static symmetry breaking, the goal is to post a set of constraints to break these target symmetries in order to reduce the solution set and thus also the search space. Symmetries of...

متن کامل

Characterizing graph symmetries through quantum Jensen-Shannon divergence.

In this paper we investigate the connection between quantum walks and graph symmetries. We begin by designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon d...

متن کامل

Divergence Symmetries of Critical Kohn - Laplace Equations on Heisenberg groups

We show that any Lie point symmetry of semilinear Kohn-Laplace equations on the Heisenberg group H with power nonlinearity is a divergence symmetry if and only if the corresponding exponent assumes critical value.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1969

ISSN: 0022-040X

DOI: 10.4310/jdg/1214429067