Distributed Parallel Particle Swarm Optimization for Multi-Objective and Many-Objective Large-Scale Optimization
نویسندگان
چکیده
منابع مشابه
R2-Based Multi/Many-Objective Particle Swarm Optimization
We propose to couple the R2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the R2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approac...
متن کاملGPU-Based Parallel Multi-objective Particle Swarm Optimization
In the recent years, multi-objective particle swarm optimization (MOPSO) has become quite popular in the field of multi-objective optimization. However, due to a large amount of fitness evaluations as well as the task of archive maintaining, the running time of MOPSO for optimizing some difficult problems may be quite long. This paper proposes a parallel MOPSO based on consumer-level Graphics P...
متن کاملMassively parallel inverse rendering using Multi-objective Particle Swarm Optimization
We present a novel GPU-accelerated per-pixel inverse rendering optimization algorithm based on Particle Swarm Optimization (PSO). Our algorithm estimates the per-pixel scene attributes—including reflectance properties—of a 3D model, and is fast enough to do in situ visualization of the optimization in real-time. The algorithm’s high parallel efficiency is demonstrated through our GPU/GLSL shade...
متن کاملUsing Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study
Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...
متن کاملMulti-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)
In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2702561