Dissipative Euler Flows with Onsager-Critical Spatial Regularity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous dissipative Euler flows and a conjecture of Onsager

It is known since the pioneering works of Scheffer and Shnirelman that there are nontrivial distributional solutions to the Euler equations which are compactly supported in space and time. Obviously these solutions do not respect the classical conservation law for the total kinetic energy and they are therefore very irregular. In recent joint works we have proved the existence of continuous and...

متن کامل

Dissipative Continuous Euler Flows

We show the existence of continuous periodic solutions of the 3D incompressible Euler equations which dissipate the total kinetic energy.

متن کامل

Dissipative Euler Flows and Onsager’s Conjecture

Building upon the techniques introduced in [12], for any θ < 1 10 we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Höldercontinuous with exponent θ. A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent θ < 1 3 . Our theorem is the first result in this direction.

متن کامل

Global Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation

In this paper, we consider the modified quasi-geostrophic equation ∂tθ + (u · ∇) θ + κΛθ = 0 u = Λα−1R⊥θ. with κ > 0, α ∈ (0, 1] and θ0 ∈ L2(R2). We remark that the extra Λα−1 is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence an...

متن کامل

Higher Regularity for the Critical and Super-critical Dissipative Quasi-geostrophic Equations

We study the critical and super-critical dissipative quasi-geostrophic equations in R or T. Higher regularity of mild solutions with arbitrary initial data in Ḣ is proved. As a corollary, we obtain a global existence result for the critical 2D quasigeostrophic equations with periodic Ḣ data. Some decay in time estimates are also provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2015

ISSN: 0010-3640

DOI: 10.1002/cpa.21586