Discriminative feature generation for classification of imbalanced data
نویسندگان
چکیده
The data imbalance problem is a frequent bottleneck in the classification performance of neural networks. In this paper, we propose novel supervised discriminative feature generation (DFG) method for minority class dataset. DFG based on modified structure generative adversarial network consisting four independent networks: generator, discriminator, extractor, and classifier. To augment selected features by adopting an attention mechanism, generator class-imbalanced target task trained, extractor classifier are regularized using pre-trained from large source data. experimental results show that enhances augmentation label-preserved diverse features, significantly improved task. model can contribute greatly to development methods through methods.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملEmpirical Similarity for Absent Data Generation in Imbalanced Classification
When the training data in a two-class classification problem is overwhelmed by one class, most classification techniques fail to correctly identify the data points belonging to the underrepresented class. We propose Similarity-based Imbalanced Classification (SBIC) that learns patterns in the training data based on an empirical similarity function. To take the imbalanced structure of the traini...
متن کاملDiscriminative Data Transform for Image Feature Extraction and Classification
Good feature design is important to achieve effective image classification. This paper presents a novel feature design with two main contributions. First, prior to computing the feature descriptors, we propose to transform the images with learning-based filters to obtain more representative feature descriptors. Second, we propose to transform the computed descriptors with another set of learnin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2022
ISSN: ['1873-5142', '0031-3203']
DOI: https://doi.org/10.1016/j.patcog.2021.108302