Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Sparse Coding via Self-Paced Learning

Sparse coding (SC) is attracting more and more attention due to its comprehensive theoretical studies and its excellent performance in many signal processing applications. However, most existing sparse coding algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and noisy data. To enhance the learning robustness, in this paper, w...

متن کامل

A multi-manifold discriminant analysis method for image feature extraction

In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for an image feature extraction and pattern recognition based on graph embedded learning and under the Fisher discriminant analysis framework. In an MMDA, the within-class graph and between-class graph are, respectively, designed to characterize the within-class compactness and the between-class separability, seeking...

متن کامل

Sparse Local Discriminant Projections for Face Feature Extraction

One of the major disadvantages of the linear dimensionality reduction algorithms, such as Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA), are that the projections are linear combination of all the original features or variables and all weights in the linear combination known as loadings are typically non-zero. Thus, they lack physical interpretation in many applicatio...

متن کامل

Sparse two-dimensional local discriminant projections for feature extraction

Two-dimensional local graph embedding discriminant analysis (2DLGEDA) and two-dimensional discriminant locality preserving projections (2DDLPP) were recently proposed to directly extract features form 2D face matrices to improve the performance of two-dimensional locality preserving projections (2DLPP). But all of them require a high computational cost and the learned transform matrices lack di...

متن کامل

Nonlinear Discriminant Feature Extraction for Robust Text-independent Speaker Recognition

We study a nonlinear discriminant analysis (NLDA) technique that extracts a speaker-discriminant feature set. Our approach is to train a multilayer perceptron (MLP) to maximize the separation between speakers by nonlinearly projecting a large set of acoustic features (e.g., several frames) to a lower-dimensional feature set. The extracted features are optimized to discriminate between speakers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2017

ISSN: 2169-3536

DOI: 10.1109/access.2017.2730281