Discriminant analysis under elliptical populations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Covariance Structures Under Elliptical Distributions

This article examines the adjustment of normal theory methods for the analysis of covariance structures to make them applicable under the class of elliptical distributions. It is shown that if the model satisfies a mild scale invariance condition and the data have an elliptical distribution, the asymptotic covariance matrix of sample covariances has a structure that results in the retention of ...

متن کامل

Elastic Buckling Analysis of Composite Shells with Elliptical Cross-section under Axial Compression

In the present research, the elastic buckling of composite cross-ply elliptical cylindrical shells under axial compression is studied through finite element approach. The formulation is based on shear deformation theory and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately acc...

متن کامل

EEG feature descriptors and discriminant analysis under Riemannian Manifold perspective

This paper presents a framework to classify motor imagery in the context of multi-class Brain Computer Interface based on electroencephalography (EEG). Covariance matrices are extracted as the EEG signal descriptors, and different dissimilarity metrics on the manifold of Symmetric Positive Definite (SPD) matrices are investigated to classify these covariance descriptors. Specifically, we compar...

متن کامل

Linear classifier design under heteroscedasticity in Linear Discriminant Analysis

Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for bina...

متن کامل

A New Discriminant Analysis Approach under Decision-Theoretic Rough Sets

Discriminant analysis is an effective methodology to deal with the classification problem. However, most common methods including binary logistic regression in discriminant analysis rarely consider the semantics explanations such as losses or costs in decision rules. From the idea of three-way decisions in decision-theoretic rough sets (DTRS), we propose a new discriminant analysis approach by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1994

ISSN: 0018-2079

DOI: 10.32917/hmj/1206128025