Discretization methods for optimal control problems with state constraints
نویسندگان
چکیده
منابع مشابه
Discretization-Optimization Methods for Nonlinear Elliptic Relaxed Optimal Control Problems with State Constraints
We consider an optimal control problem described by a second order elliptic boundary value problem, jointly nonlinear in the state and control with high monotone nonlinearity in the state, with control and state constraints, where the state constraints and cost functional involve also the state gradient. Since no convexity assumptions are made, the problem may have no classical solutions, and s...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملBarrier Methods for Optimal Control Problems with State Constraints
We study barrier methods for state constrained optimal control problems with PDEs. In the focus of our analysis is the path of minimizers of the barrier subproblems with the aim to provide a solid theoretical basis for function space oriented path-following algorithms. We establish results on existence, continuity, and convergence of this path. Moreover, we consider the structure of barrier sub...
متن کاملDiscretization-Optimization Methods for Optimal Control Problems
We consider an optimal control problem described by nonlinear ordinary differential equations, with control and state constraints. Since this problem may have no classical solutions, it is also formulated in relaxed form. The classical control problem is then discretized by using the implicit midpoint scheme for state approximation, while the controls are approximated by piecewise constant clas...
متن کاملvariational discretization and mixed methods for semilinear parabolic optimal control problems with integral constraint
the aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. the state and co-state are approximated by the lowest order raviart-thomas mixed finite element spaces and the control is not discreted. optimal error estimates in l2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2006
ISSN: 0377-0427
DOI: 10.1016/j.cam.2005.04.020