Discrete wave mechanics: Multidimensional systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multidimensional discrete Hilbert-type inequality

In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.

متن کامل

Fast algorithms of multidimensional discrete nonseparable -wave transforms

Fast algorithms for a wide class of non–separable n–dimensional (nD) discrete unitary K– transforms (DKT) are introduced. They need less 1D DKTs than in the case of the classical radix–2 FFT–type approach. The method utilizes a decomposition of the nDK–transform into the product of a new nD discrete Radon transform and of a set of parallel/independ 1D K–transforms. If the nD K–transform has a s...

متن کامل

Wave Propagation Algorithms for Multidimensional Hyperbolic Systems

In one space dimension the standard conservation law has the form A class of high resolution multidimensional wave-propagation algorithms is described for general time-dependent hyperbolic systems. The methods are based on solving Riemann problems and qt 1 f(q)x 5 0, (1) applying limiter functions to the resulting waves, which are then propagated in a multidimensional manner. For nonlinear syst...

متن کامل

Variational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems

We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...

متن کامل

Wave Mechanics

1 The Schrödinger equation In classical mechanics the motion of a particle is usually described using the time-dependent position ix(t) as the dynamical variable. In wave mechanics the dynamical variable is a wavefunction. This wavefunction depends on position and on time and it is a complex number – it belongs to the complex numbers C (we denote the real numbers by R). When all three dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1987

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.84.10.3091