Discrete Stable and Casual Stable Random Variables*

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Simulating Stable Random Variables

In general case, Chambers et al. (1976) introduced the following algorithm for simulating any stable random variables $ X/sim(alpha, beta, gamma, delta) $ with four parameters. They use a nonlinear transformation of two independent uniform random variables for simulating an stable random variable... (to continue, click here)

متن کامل

Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables

Random Forests in combination with Stability Selection allow to estimate stable conditional independence graphs with an error control mechanism for false positive selection. This approach is applicable to graphs containing both continuous and discrete variables at the same time. Its performance is evaluated in various simulation settings and compared with alternative approaches. Finally, the ap...

متن کامل

On Symmetric Stable Random Variables and Matrix Transposition

In a companion paper, the authors obtained some Fubini type identities in law for quadratic functionals of Brownian motion, and, more generally, for certain functionals of symmetric stable processes, the function: x -* x2 then being replaced by: x e IxIa. In this paper, discrete analogues of such identities in law, which involve a sequence of independent standard symmetric stable r.v.'s of inde...

متن کامل

Characteristic Functions of Random Variables Attracted to 1{stable Laws

The domain of attraction of a 1-stable law on R d is characterised by the expansions of the characteristic functions of its elements. k=1 X k , are given by the well known stable laws. ((Le], G-K], I-L]). A probability distribution function F on R d is called stable if for all a; b > 0 there are c > 0 and v 2 R d such that F a F b (x) = F c (x ? v) (x 2 R d) where F s (x) = F(x=s) (x 2 R d ; s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2016

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-016-3018-4