Discrete conformal maps and ideal hyperbolic polyhedra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discrete Conformal Seamless Similarity Maps

An algorithm for the computation of global discrete conformal parametrizations with prescribed global holonomy signatures for triangle meshes was recently described in [Campen and Zorin 2017]. In this paper we provide a detailed analysis of convergence and correctness of this algorithm. We generalize and extend ideas of [Springborn et al. 2008] to show a connection of the algorithm to Newton’s ...

متن کامل

An Inequality for Polyhedra and Ideal Triangulations of Cusped Hyperbolic 3-manifolds

It is not known whether every noncompact hyperbolic 3-manifold of finite volume admits a decomposition into ideal tetrahedra. We give a partial solution to this problem: Let M be a hyperbolic 3-manifold obtained by identifying the faces of n convex ideal polyhedra P1, . . . , Pn. If the faces of P1, . . . , Pn−1 are glued to Pn, then M can be decomposed into ideal tetrahedra by subdividing the ...

متن کامل

Quasiconformal distortion of projective transformations and discrete conformal maps

We consider the quasiconformal dilatation of projective transformations of the real projective plane. For non-affine transformations, the contour lines of dilatation form a hyperbolic pencil of circles, and these are the only circles that are mapped to circles. We apply this result to analyze the dilatation of the circumcircle preserving piecewise projective interpolation between discretely con...

متن کامل

Hyperideal polyhedra in hyperbolic manifolds

Let (M, ∂M) be a 3-manifold with incompressible boundary that admits a convex co-compact hyperbolic metric (but is not a solid torus). We consider the hyperbolic metrics on M such that ∂M looks locally like a hyperideal polyhedron, and we characterize the possible dihedral angles. We find as special cases the results of Bao and Bonahon [BB02] on hyperideal polyhedra, and those of Rousset [Rou02...

متن کامل

Computation of Quasi-Conformal Surface Maps Using Discrete Beltrami Flow

The manipulation of surface homeomorphisms is an important aspect in 3D modeling and surface processing. Every homeomorphic surface map can be considered as a quasiconformal map, with its local non-conformal distortion given by its Beltrami differential. As a generalization of conformal maps, quasiconformal maps are of great interest in mathematical study and real applications. Efficient and ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2015

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2015.19.2155