Discrete-Attractor-like Tracking in Continuous Attractor Neural Networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Attractor Neural Networks

In this chapter a brief review is given of computational systems that are motivated by information processing in the brain, an area that is often called neurocomputing or artificial neural networks. While this is now a well studied and documented area, specific emphasis is given to a subclass of such models, called continuous attractor neural networks, which are beginning to emerge in a wide co...

متن کامل

Tracking Changing Stimuli in Continuous Attractor Neural Networks

Continuous attractor neural networks (CANNs) are emerging as promising models for describing the encoding of continuous stimuli in neural systems. Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of neutrally stable states. In this study, we systematically explore how neutral stability of a CANN facilitates its tracking performance, a capaci...

متن کامل

Continuous Attractor Nueral Networks

In this chapter a brief review is given of computational systems that are motivated by information processing in the brain, an area that is often called neurocomputing or artificial neural networks. While this is now a well studied and documented area, specific emphasis is given to a subclass of such models, called continuous attractor neural networks, which are beginning to emerge in a wide co...

متن کامل

Attractor Neural Networks

In this lecture I will present some models of neural networks that have been developed in the recent years. The aim is to construct neural networks which work as associative memories. Different attractors of the network will be identified as different internal representations of different objects. At the end of the lecture I will present a comparison among the theoretical results and some of th...

متن کامل

( 1 + ∞ ) - dimensional attractor neural networks

We solve a class of attractor neural network models with a mixture of 1D nearestneighbour interactions and infinite-range interactions, which are both of a Hebbian-type form. Our solution is based on a combination of mean-field methods, transfer matrices, and 1D random-field techniques, and is obtained both for Boltzmann-type equilibrium (following sequential Glauber dynamics) and Peretto-type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2019

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.122.018102