Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales

A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advectiondiffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection-diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domai...

متن کامل

Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales

An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Paris, Ser. I 346 (2008)] is based on numerical homogenization. It allows to significantly reduce the computational cost of a fine scale discont...

متن کامل

Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman's Equations

We present a two-scale finite element method for solving Brinkman’s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation deve...

متن کامل

Discontinuous Galerkin finite element method for parabolic problems

In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of IIut(t)llLz(n) = llut112, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also...

متن کامل

Adaptive finite element heterogeneous multiscale method for homogenization problems

Article history: Received 27 August 2009 Received in revised form 29 April 2010 Accepted 8 June 2010 Available online 18 June 2010

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2013

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-013-0578-9