Dirichlet problem in Lipschitz domains with BMO data
نویسندگان
چکیده
منابع مشابه
Elliptic Equations with Bmo Coefficients in Lipschitz Domains
In this paper, we study inhomogeneous Dirichlet problems for elliptic equations in divergence form. Optimal regularity requirements on the coefficients and domains for the W 1,p (1 < p < ∞) estimates are obtained. The principal coefficients are supposed to be in the John-Nirenberg space with small BMO semi-norms. The domain is supposed to have Lipschitz boundary with small Lipschitz constant. T...
متن کامل-Weighted Inequalities with Lipschitz and BMO Norms
Copyright q 2010 Yuxia Tong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We first define a new kind of A λ3 r λ 1 , λ 2 , ΩΩ two-weight, then obtain some two-weight integral inequalities with Lipschitz norm and BMO norm ...
متن کاملRegularity Problem on Lipschitz Domains
This paper contains two results on the Lp regularity problem on Lipschitz domains. For second order elliptic systems and 1 < p < ∞, we prove that the solvability of the Lp regularity problem is equivalent to that of the Lp ′ Dirichlet problem. For higher order elliptic equations and systems, we show that if p > 2, the solvability of the Lp regularity problem is equivalent to a weak reverse Höld...
متن کاملHalf-Dirichlet problems for Dirac operators in Lipschitz domains
Recall that in the case of the Dirichlet problem for the Laplace operator ∂2 x +∂ 2 y in Ω ⊆ R2, one prescribes the whole trace of a harmonic function in, say, L2(∂Ω). On the other hand, for the Cauchy-Riemann operator ∂x + i∂y, natural boundary problems are obtained by prescribing “half” of the trace of the analytic function in L2(∂Ω). Such half-Dirichlet problems arise when, for example, one ...
متن کاملThe L Dirichlet Problem for the Stokes System on Lipschitz Domains
We study the Lp Dirichlet problem for the Stokes system on Lipschitz domains. For any fixed p > 2, we show that a reverse Hölder condition with exponent p is sufficient for the solvability of the Dirichlet problem with boundary data in LpN (∂Ω, R d). Then we obtain a much simpler condition which implies the reverse Hölder condition. Finally, we establish the solvability of the Lp Dirichlet prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1980
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1980-0548079-8