Dirichlet polynomials, majorization, and trumping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trumping Preemption

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Hyperbolic Polynomials and the Dirichlet Problem

This paper presents a simple, self-contained account of G̊arding’s theory of hyperbolic polynomials, including a recent convexity result of Bauschke-Guler-Lewis-Sendov and an inequality of Gurvits. This account also contains new results, such as the existence of a real analytic arrangement of the eigenvalue functions. In a second, independent part of the paper, the relationship of G̊arding’s theo...

متن کامل

Harmonic Polynomials and Dirichlet-Type Problems

We take a new approach to harmonic polynomials via differentiation. Surprisingly powerful results about harmonic functions can be obtained simply by differentiating the function |x|2−n and observing the patterns that emerge. This is one of our main themes and is the route we take to Theorem 1.7, which leads to a new proof of a harmonic decomposition theorem for homogeneous polynomials (Corollar...

متن کامل

Convergence of Dirichlet Polynomials in Banach Spaces

Recent results on Dirichlet series ∑ n an 1 ns , s ∈ C, with coefficients an in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact due to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends o...

متن کامل

Dirichlet orthogonal polynomials with Laguerre weight

Let {λj}j=1 be a sequence of distinct positive numbers. We find explicit formulae for the orthogonal Dirichlet polynomials {ψn} formed from linear combinations of { λ−it j }n j=1 , associated with the Laguerre weight. Thus ∫ ∞ 0 ψn (t)ψm (t)e −tdt = δmn. In addition, we estimate Christoffel functions and establish Markov-Bernstein inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2013

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/46/22/225302