Directional recurrence and directional rigidity for infinite measure preserving actions of nilpotent lattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIRECTIONAL RECURRENCE FOR INFINITE MEASURE PRESERVING Zd ACTIONS

We define directional recurrence for infinite measure preserving Z actions both intrinsically and via the unit suspension flow and prove that the two definitions are equivalent. We study the structure of the set of recurrent directions and show it is always a Gδ set. We construct an example of a recurrent action with no recurrent directions, answering a question posed in a 2007 paper of Daniel ...

متن کامل

Linear Functions Preserving Multivariate and Directional Majorization

Let V and W be two real vector spaces and let &sim be a relation on both V and W. A linear function T : V → W is said to be a linear preserver (respectively strong linear preserver) of &sim if Tx &sim Ty whenever x &sim y (respectively Tx &sim Ty if and only if x &sim y). In this paper we characterize all linear functions T : M_{n,m} → M_{n,k} which preserve or strongly preserve multivariate an...

متن کامل

Multiple and Polynomial Recurrence for Abelian Actions in Infinite Measure

We apply the (C, F )-construction from [Da] to produce a number of funny rank one infinite measure preserving actions of Abelian groups G with “unusual” multiple recurrence properties. In particular, we construct the following for each p ∈ N ∪ {∞}: (i) a p-recurrent action T = (Tg)g∈G such that (if p 6=∞) no one transformation Tg is (p + 1)-recurrent for every element g of infinite order, (ii) ...

متن کامل

Measurable Rigidity of Actions on Infinite Measure Homogeneous Spaces, Ii

Theorem 1.1 (Shalom and Steger, [21]). Measurable isomorphisms between linear actions on R of abstractly isomorphic lattices in SL2(R) are algebraic. More precisely, if τ : Γ1 ∼= −→Γ2 is an isomorphism between two lattices in SL2(R) and T : R → R is a measure class preserving map with T (γx) = γT (x) for a.e. x ∈ R and all γ ∈ Γ1, then there exists A ∈ GL2(R) so that γ = AγA−1 for all γ ∈ Γ1 an...

متن کامل

Extensions and Multiple Recurrence of infinite measure preserving systems

We prove that an extension of an invertible, multiply-recurrent infinite measure preserving transformation is also multiply-recurrent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2016

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2015.127