Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells

نویسندگان
چکیده

منابع مشابه

Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation.

Recently, researchers have created novel fluorescent proteins by harnessing the somatic hypermutation ability of B cells. In this study, we examined if this approach could be used to evolve a non-fluorescent protein, namely the anti-apoptosis protein Bcl-x(L), using the Ramos B-cell line. After demonstrating that Ramos cells were capable of mutating a heterologous bcl-x(L) transgene, the cells ...

متن کامل

Reprogramming mammalian somatic cells.

Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in ...

متن کامل

Genome-wide somatic hypermutation.

DNA mutagenesis is generally considered harmful. Yet activated B cells normally mutate the Ig loci. Because this somatic hypermutation is potentially dangerous, it has been hypothesized that mutations do not occur throughout the genome but instead are actively targeted to the Ig loci. Here we challenge this longstanding and widely accepted hypothesis. We demonstrate that hypermutation requires ...

متن کامل

Evolution of new nonantibody proteins via iterative somatic hypermutation.

B lymphocytes use somatic hypermutation (SHM) to optimize immunoglobulins. Although SHM can rescue single point mutations deliberately introduced into nonimmunoglobulin genes, such experiments do not show whether SHM can efficiently evolve challenging novel phenotypes requiring multiple unforeseeable mutations in nonantibody proteins. We have now iterated SHM over 23 rounds of fluorescence-acti...

متن کامل

Immunoglobulin somatic hypermutation.

The immunoglobulin (Ig) repertoire achieves functional diversification through several somatic alterations of the Ig locus. One of these processes, somatic hypermutation (SHM), deposits point mutations into the variable region of the Ig gene to generate higher-affinity variants. Activation-induced cytidine deaminase (AID) converts cytidine to uridine to initiate the hypermutation process. Error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Methods

سال: 2016

ISSN: 1548-7091,1548-7105

DOI: 10.1038/nmeth.4038