Direct Corticospinal Control of Force Derivative
نویسندگان
چکیده
منابع مشابه
Direct corticospinal control of force derivative.
During simultaneous generation of static and dynamic forces, motor cortical signals only predict the dynamic components, suggesting a key role in the coding of force changes. However, such a role is obscured by uncertainties regarding the representation of dynamic force signals in corticospinal outputs. We used transcranial magnetic stimulation (TMS) of the motor cortex in humans during a task ...
متن کاملGalloping and VIV control of square-section cylinder utilizing direct opposing smart control force
An adaptive fuzzy sliding mode controller (AFSMC) is adopted to reduce the 2D flow-induced vibration of an elastically supported square-section cylinder, free to oscillate in stream-wise andtransverse directions in both lock-in and galloping regions. The AFSMC strategy consists of a fuzzy logic inference system intended to follow a sliding-mode controller (SMC), and a robust control syste...
متن کاملDirect corticospinal pathways contribute to neuromuscular control of perturbed stance.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimul...
متن کاملDirect Acceleration Feedback Control of Shake Tables with Force Stabilization
This study presents a new strategy for shake table control that uses direct acceleration feedback without need for displacement feedback. To ensure stability against table drift, force feedback is incorporated. The proposed control strategy was experimentally validated using the shake table at the Johns Hopkins University. Experimental results showed that the proposed control strategy produced ...
متن کاملLack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey.
Strong experimental evidence implicates the corticospinal tract in voluntary control of the contralateral forelimb. Its potential role in controlling the ipsilateral forelimb is less well understood, although anatomical projections to ipsilateral spinal circuits are identified. We investigated inputs to motoneurons innervating hand and forearm muscles from the ipsilateral corticospinal tract us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2011
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.0056-10.2011