Dirac manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Operators on 4-manifolds

Dirac operators are important geometric operators on a manifold. The Dirac operator DA on the four dimensional Euclidean space M = R is the order one differential operator whose square DA ◦ DA is the Euclidean Laplacian − ∑4 i=1 ∂ψ ∂xi . However, this is not possible unless we allow coefficients for this linear operator to be matrix-valued. Let M = R be the four dimensional Euclidean space with...

متن کامل

Manifolds with small Dirac eigenvalues are nilmanifolds

Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and diameter, and almost non-negative scalar curvature. Let r = 1 if n = 2, 3 and r = 2 + 1 if n ≥ 4. We show that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is ...

متن کامل

Dirac operators on manifolds with periodic ends

This paper studies Dirac operators on end-periodic spin manifolds of dimension at least 4. We provide a necessary and sufficient condition for such an operator to be Fredholm for a generic end-periodic metric. We make use of end-periodic Dirac operators to give an analytical interpretation of an invariant of non-orientable smooth 4-manifolds due to Cappell and Shaneson. From this interpretation...

متن کامل

On the local structure of Dirac manifolds

We give a local normal form for Dirac structures. As a consequence, we show that the dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We also show that, given a point m of a Dirac manifold M , there is a well-defined transverse Poisson structure to the pre-symplectic leaf P through m. Finally, we describe the neighborhood of a pre-symplectic leaf in terms of geo...

متن کامل

The Higher Spin Dirac Operators on 3-Dimensional Manifolds

We study the higher spin Dirac operators on 3-dimensional manifolds and show that there exist two Laplace type operators for each associated bundle. Furthermore, we give lower bound estimations for the first eigenvalues of these Laplace type operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1990

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1990-0998124-1