Diophantine Equations in Recursive Difference.
نویسندگان
چکیده
منابع مشابه
Diophantine equations for second order recursive sequences of polynomials
Let B be a nonzero integer. Let define the sequence of polynomials Gn(x) by G0(x) = 0, G1(x) = 1, Gn+1(x) = xGn(x) +BGn−1(x), n ∈ N. We prove that the diophantine equation Gm(x) = Gn(y) for m,n ≥ 3, m 6= n has only finitely many solutions.
متن کاملDiophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملDiophantine Approximations, Diophantine Equations, Transcendence and Applications
This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality i...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1964
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-10725