Diophantine approximation on the parabola with non-monotonic approximation functions
نویسندگان
چکیده
منابع مشابه
Diophantine Approximation with Arithmetic Functions, Ii
We prove that real numbers can be well-approximated by the normalized Fourier coefficients of newforms.
متن کاملDiophantine Approximation with Arithmetic Functions, I
We prove a strong simultaneous Diophantine approximation theorem for values of additive and multiplicative functions provided that the functions have certain regularity on the primes.
متن کاملInhomogeneous Diophantine approximation with general error functions
Let α be an irrational and φ : N → R be a function decreasing to zero. For any α with a given Diophantine type, we show some sharp estimations for the Hausdorff dimension of the set Eφ(α) := {y ∈ R : ‖nα− y‖ < φ(n) for infinitely many n}, where ‖ · ‖ denotes the distance to the nearest integer.
متن کاملInhomogeneous Non-linear Diophantine Approximation
Let be a strictly positive monotonically decreasing function deened on the set of positive integers. Given real numbers and , consider the solubility of the following two inequalities jq + pj < (q); (1) jq + p + j < (q) (2) for integers p and q. The rst problem is said to be homogeneous and the second inho-mogeneous (see 2]). The well known theorem of Khintchine 2, 4] asserts that for almost al...
متن کاملDiophantine Approximation on Veech
— We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 2019
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s0305004118000932