Diminishable parameterized problems and strict polynomial kernelization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diminishable Parameterized Problems and Strict Polynomial Kernelization

Kernelization—a mathematical key concept for provably effective polynomial-time preprocessing of NP-hard problems—plays a central role in parameterized complexity and has triggered an extensive line of research. This is in part due to a lower bounds framework that allows to exclude polynomial-size kernels under the assumption of NP * coNP/poly. In this paper we consider a restricted yet natural...

متن کامل

Kernelization of packing problems

Kernelization algorithms are polynomial-time reductions from a problem to itself that guarantee their output to have a size not exceeding some bound. For example, d-Set Matching for integers d ≥ 3 is the problem of nding a matching of size at least k in a given d-uniform hypergraph and has kernels with O(k) edges. Recently, Bodlaender et al. [ICALP 2008], Fortnow and Santhanam [STOC 2008], Dell...

متن کامل

Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

A 3-path vertex cover in a graph is a vertex subset C such that every path of three vertices contains at least one vertex from C. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most k. In this paper, we give a kernel of 5k vertices and an O(1.7485)-time polynomial-space algorithm for this problem, both new results improve previous known b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computability

سال: 2020

ISSN: 2211-3576,2211-3568

DOI: 10.3233/com-180220